Understanding how waves in the tropical atmosphere trigger extreme weather (MATTHEWS_UENV18EE)

Employer
University of East Anglia
Location
Other
Posted
October 12 2017
Position Type
Full Time
Organization Type
Academia

Scientific background


Extreme weather in the tropics, particularly in the form of heavy rainfall and strong winds, can affect the livelihoods of the local population through flooding, landslides and impacts on agriculture and local infrastructure. Extreme weather in the tropics is controlled to a large part by waves in the tropical atmosphere. These waves are the response of the tropical atmosphere to fluctuations in the large-scale tropical circulation and rainfall patterns; effectively the natural or normal modes of the tropical atmosphere, rather like standing waves or harmonics are the normal modes of a guitar string. So-called “convectively-coupled equatorial waves” are one example that combine tropical atmospheric waves with tropical atmospheric convection (i.e. thunderstorms). These tropical waves are predictable up to a few days ahead, and are one of the few sources of predictability in the tropical atmosphere.


Although the broad features of these tropical waves are known, their impact on extreme weather is not; this represents a major gap in our understanding of tropical weather.


Research methodology


You will determine the effect of tropical waves on extreme weather in the tropics. Initially, this will involve analysis of state-of-the-art satellite data sets that measure rainfall every 3 hours across the whole tropics. You will then conduct sets of experiments with an atmospheric climate model to determine what factors generate and influence these tropical waves.


Training and research environment


You will join an active research group at UEA in tropical meteorology and climate. You will be trained in meteorological and climate theory, and in the theoretical and practical aspects of meteorological analysis of very large data sets, and computer modelling of weather and climate. You will have the opportunity to present your work at national and international conferences. There may also be an opportunity to take part in the international Equatorial Line Observations field campaign in Sumatra and Borneo in 2018/19, which is focussed on understanding the mechanisms of tropical waves.


Secondary supervisors: Dr Manoj Joshi (UEA), Dr Ben Webber (UEA), Dr Darek Baranowski (University of Warsaw)


Person specification


We seek an enthusiastic, pro-active student with strong scientific interests and self-motivation. You will have a degree in physics, mathematics, meteorology, oceanography or environmental science with good numerical ability.


Funding


This project has been shortlisted for funding by the EnvEast NERC Doctoral Training Partnership, comprising the Universities of East Anglia, Essex and Kent, with over twenty other research partners. Undertaking a PhD with the EnvEast DTP will involve attendance at mandatory training events throughout the course of the PhD.


Shortlisted applicants will be interviewed on 12/13 February 2018.


Successful candidates who meet RCUK's eligibility criteria will be awarded a NERC studentship - in 2017/18, the stipend is £14,553. In most cases, UK and EU nationals who have been resident in the UK for 3 years are eligible for a stipend. For non-UK EU-resident applicants NERC funding can be used to cover fees, RTSG and training costs, but not any part of the stipend. Individual institutes may, however, elect to provide a stipend from their own resources.


EnvEast welcomes applicants from quantitative disciplines who may have limited background in environmental sciences. Excellent candidates will be considered for an award of an additional 3-month stipend to take appropriate advanced-level courses in the subject area.


For further information, please visit www.enveast.ac.uk/apply.



This job comes from a partnership with Science Magazine and Euraxess