Design principles for synthetic gene regulation: understanding how cis-regulatory functions are e...

Earlham Institute
October 06 2017
Life Sciences, Biology
Position Type
Full Time
Organization Type

Plants are emerging as commercially-relevant production systems for high-value natural products. This requires suites of non-homologous, characterised regulatory elements for applications such as balancing components within a responsive circuit and preventing the build-up of toxic intermediates along a biosynthesis pathway. Plant regulatory sequences are comprised of complex arrangements of protein binding motifs and cis-regulatory elements. Both the primary DNA sequence and secondary DNA structure contribute to regulating gene-expression by recruiting proteins and dictating nucleosome architecture. This project will apply an original synthetic-biology approach to study the relationship between sequence and function utilising comparative genomic approaches to inform the design of synthetic regulatory sequences. This will enable us to understand how cis-regulatory function is encoded in specific DNA sequences. The project will focus on the identification and characterisation of cis-regulatory elements conserved across plants to inform the design of minimal synthetic elements that function across species. Comparative analysis of genome sequences will be used to inform iterative 'design-build-test-learn' cycles in which the function of libraries of designed, synthetic sequences will be analysed. The student will be trained in bioinformatics and comparative genomics analyses, synthetic biology approaches and low and high-throughput plant molecular biology and biotechnology techniques.

This project has been shortlisted for funding by the Norwich Biosciences Doctoral Training Partnership (NRPDTP). Shortlisted applicants will be interviewed as part of the studentship competition. Candidates will be interviewed on either the 9th, 10th or 11th January 2018.

The Norwich Biosciences Doctoral Training Partnership (NRPDTP) offers postgraduates the opportunity to undertake a 4 year research project whilst enhancing professional development and research skills through a comprehensive training programme. You will join a vibrant community of world-leading researchers. All NRPDTP students undertake a three month professional internship (PIPS) during their study. The internship offers exciting and invaluable work experience designed to enhance professional development. Full support and advice will be provided by our Professional Internship team. Students with, or expecting to attain, at least an upper second class honours degree, or equivalent, are invited to apply.

For further information and to apply, please visit our website:

Funding notes

Full Studentships cover a stipend (RCUK rate: £14,553pa - 2017/8), research costs and tuition fees at UK/EU rate, and are available to UK and EU students who meet the UK residency requirements.

Students from EU countries who do not meet the UK residency requirements may be eligible for a fees-only award. Students in receipt of a fees-only award will be eligible for a maintenance stipend awarded by the NRPDTP Bioscience Doctoral Scholarships, which when combined will equal a full studentship. To be eligible students must meet the EU residency requirements. Details on eligibility for funding on the BBSRC website:

This job comes from a partnership with Science Magazine and Euraxess

Similar jobs

Similar jobs